Tổng hợp lý thuyết Toán 11 (sách mới)
Trọn bộ tổng hợp lý thuyết Toán 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều hay, chi tiết đầy đủ Học kì 1, Học kì 2 giúp học sinh lớp 11 nắm được kiến thức trọng tâm Toán 11.
Tổng hợp lý thuyết Toán 11 (sách mới)
VietJack giới thiệu tài liệu bài tập Toán 11 gồm: Bài tập tự luận, bài tập trắc nghiệm đầy đủ các mức độ Nhận biết, thông hiểu, Vận dụng, Vận dụng cao có lời giải chi tiết, cực kì thích hợp để ra bài tập trong các buổi dạy thêm hoặc ôn tập.
Xem thử Bài tập Toán 11 KNTT Xem thử Bài tập Toán 11 CD
Chỉ từ 500k mua trọn bộ Bài tập Toán 11 (Trắc nghiệm & Tự luận) cả năm bản word có lời giải chi tiết, trình bày đẹp mắt, dễ dàng chỉnh sửa:
- B1: gửi phí vào tk:
1053587071
- NGUYEN VAN DOAN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận giáo án
Lý thuyết Toán 11 Kết nối tri thức
(Kết nối tri thức) Lý thuyết Toán 11 Bài 1: Giá trị lượng giác của góc lượng giác
1. Góc lượng giác
a) Khái niệm góc lượng giác và số đo của góc lượng giác
– Trong mặt phẳng, cho hai tia Ou, Ov. Xét tia Om cùng nằm trong mặt phẳng này. Nếu tia Om quay quanh điểm O, theo một chiều nhất định từ Ou đến Ov, thì ta nói nó quét một góc lượng giác với tia đầu Ou, tia cuối Ov và kí hiệu là (Ou, Ov).
– Góc lượng giác (Ou, Ov) chỉ được xác định khi ta biết được chuyển động quay của tia Om từ tia đầu Ou đến tia cuối Ov (H.1.3). Ta quy ước: Chiều quay ngược với chiều quay của kim đồng hồ là chiều dương, chiều quay cùng chiều kim đồng hồ là chiều âm.
Khi đó, nếu tia Om quay theo chiều dương đúng một vòng ta nói tia Om quay góc 360°, quay đúng 2 vòng ta nói nó quay góc 720°; quay theo chiều âm nửa vòng ta nói nó quay góc –180°, quay theo chiều âm 1,5 vòng ta nói nó quay góc –1,5.360° = –540°, …
Khi tia Om quay góc α° thì ta nói góc lượng giác mà tia đó quét nên có số đo α°. Số đo của góc lượng giác có tia đầu Ou, tia cuối Ov được kí hiệu là sđ (Ou, Ov).
– Mỗi góc lượng giác gốc O được xác định bởi tia đầu Ou, tia cuối Ov và số đo của nó.
Chú ý: Cho hai tia Ou, Ov thì có vô số góc lượng giác tia đầu Ou, tia cuối Ov. Mỗi góc lượng giác như thế đều kí hiệu là (Ou, Ov). Số đo của các góc lượng giác này sai khác nhau một bội nguyên của 360°.
Ví dụ: Cho góc hình học uOv có số đo 30° (như hình vẽ). Xác định số đo của các góc lượng giác (Ou, Ov) và (Ov, Ou).
Hướng dẫn giải
Ta có:
– Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là sđ(Ou, Ov) = 30° + k360° (k ∈ ℤ).
– Các góc góc lượng giác tia đầu Ov, tia cuối Ou có số đo là sđ(Ov, Ou) = –30° + k360° (k ∈ ℤ).
b) Hệ thức Chasles
Với ba tia Ou, Ov, Ow bất kì, ta có:
sđ (Ou, Ov) + sđ (Ov, Ow) = sđ (Ou, Ow) + k360° (k ∈ ℤ).
Nhận xét: Từ hệ thức Chasles, ta suy ra:
Với ba tia tùy ý Ox, Ou, Ov ta có:
sđ (Ou, Ov) = sđ (Ox, Ov) – sđ (Ox, Ou) + k360° (k ∈ ℤ).
Ví dụ: Cho một góc lượng giác có sđ (Ox, Ou) = 120° và một góc lượng giác (Ox, Ov) có số đo 250°. Tính số đo của góc lượng giác (Ou, Ov).
Hướng dẫn giải
Ta có:
sđ (Ou, Ov) = sđ (Ox, Ov) – sđ (Ox, Ou) + k360° = 250° – 120° + k360° = 130°+ k360°.
2. Đơn vị đo góc và độ dài cung tròn
a) Đơn vị đo góc và cung tròn
– Đơn vị độ: Để đo góc, ta dùng đơn vị độ. Ta đã biết: Góc 1° bằng góc bẹt.
Đơn vị độ được chia thành những đơn vị nhỏ hơn 1° = 60´; 1´ = 60".
– Đơn vị rađian: Cho đường tròn (O) tâm O, bán kính R và một cung AB trên (O).
Ta nói cung tròn AB có số đo bằng 1 rađian nếu độ dài của nó đúng bằng bán kính R.
Khi đó ta cũng nói rằng góc AOB có số đo bằng 1 rađian và viết .
– Quan hệ giữa độ và rađian: Do đường tròn có độ dài 2ℼR nên nó có số đo 2ℼ rad. Mặt khác, đường tròn có số đo bằng 360° nên ta có 360° = 2ℼ rad.
Do đó ta viết và .
Chú ý:
– Khi viết số đo của một góc theo đơn vị rađian, người ta thường không viết chữ rad sau số đo. Chẳng hạn góc được hiểu là góc rad.
– Dưới đây là bảng tương ứng giữa số đo bằng độ và số đo bằng rađian của các góc đặc biệt trong phạm vi từ 0° đến 180°.
Ví dụ:
a) 50° =
b) .
b) Độ dài cung tròn
Một cung của đường tròn bán kính R và có số đo α rad thì có độ dài l = Rα.
Ví dụ:
Cung của đường tròn bán kính 2 cm và có số đo thì có độ dài l = 2. = (cm).
3. Giá trị lượng giác của góc lượng giác
a) Đường tròn lượng giác
– Đường tròn lượng giác là đường tròn có tâm tại gốc tọa độ, bán kính bằng 1, được định hướng và lấy điểm A(1; 0) làm điểm gốc của đường tròn.
– Điểm trên đường tròn lượng giác biểu diễn góc lượng giác có số đo α (độ hoặc rađian) là điểm M trên đường tròn lượng giác sao cho sđ (OA, OM) = α.
Ví dụ: Điểm M trên đường tròn lượng giác biểu diễn góc có số đo –120° được xác định như trong hình sau:
b) Các giá trị lượng giác của góc lượng giác
– Hoành độ x của điểm M được gọi là côsin của α, kí hiệu là cos α.
cosα = x.
– Tung độ y của điểm M được gọi là sin của α, kí hiệu là sin α.
sinα = y.
– Nếu cosα ≠ 0, tỉ số được gọi là tang của α, kí hiệu là tanα.
.
– Nếu sinα ≠ 0, tỉ số được gọi là côtang của α, kí hiệu là cotα.
.
– Các giá trị cosα, sinα, tanα, cotα được gọi là giá trị lượng giác của α.
Chú ý:
– Ta còn gọi trục tung là trục sin, trục hoành là trục côsin.
– Từ định nghĩa ta suy ra:
+ sinα, cosα xác định với mọi giá trị của α và ta có:
–1 ≤ sinα ≤ 1; –1 ≤ cosα ≤ 1;
sin (α + k2ℼ) = sinα; cos (α + k2ℼ) = cosα (k ∈ ℤ).
+ tanα xác định khi
+ cotα xác định khi .
+ Dấu của các giá trị lượng giác của một góc lượng giác phụ thuộc vào vị trí điểm biểu diễn M trên đường tròn lượng giác.
Ví dụ: Cho góc lượng giác có số đo bằng .
a) Xác định điểm M trên đường tròn lượng giác biểu diễn góc lượng giác đã cho.
b) Tính các giá trị lượng giác của góc lượng giác đã cho.
Hướng dẫn giải
a) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo được xác định trong hình dưới đây.
b) Ta có:
; ;
; .
c) Giá trị lượng giác của các góc đặc biệt
d) Sử dụng máy tính cầm tay để đổi số đo và tìm giác trị lượng giác của góc.
– Có thể dùng máy tính cầm tay để tính giá trị lượng giác của góc lượng giác và đổi số đo độ của cung tròn ra rađian và ngược lại.
Ví dụ: Sử dụng máy tính cầm tay để:
a) Tính cos(–147°) (làm tròn đến chữ số thập phân thứ năm).
b) Đổi rad sang độ.
Hướng dẫn giải
a) Ta bấm máy tính cầm tay như sau:
Máy tính hiển thị ra kết quả: –0.8386705679
Vậy cos(–147°) ≈ –0,83867.
b) Ta bấm máy tính cầm tay như sau:
Kết quả máy tính hiện ra 25°27’53.25’’
Vậy rad bằng 25°27’53,25’’.
4. Quan hệ giữa các giá trị lượng giác
a) Các công thức lượng giác cơ bản
sin2 α + cos2 α = 1
tanα . cotα = 1
Ví dụ: Tính các giá trị lượng giác của góc α, biết cosα = và 0 < α < 90°.
Hướng dẫn giải
Vì 0 < α < 90° nên sin α > 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra
.
Do đó, và .
b) Giá trị lượng giác của các góc có liên quan đặc biệt
– Góc đối nhau (α và –α )
cos(–α) = cos α
sin(–α) = – sin α
tan(–α) = – tan α
cot(–α) = – cot α
– Góc bù nhau (α và ℼ – α)
sin(ℼ – α) = sin α
cos(ℼ – α) = – cos α
tan(ℼ – α) = – tan α
cot(ℼ – α) = – cot α
– Góc phụ nhau (α và )
– Góc hơn kém ℼ (α và ℼ + α)
sin (ℼ + α) = – sin α
cos (ℼ + α) = – cos α
tan (ℼ + α) = tan α
cot (ℼ + α) = cot α
Chú ý: Nhờ các công thức trên, ta có thể đưa việc tính giá trị lượng giác của một góc lượng giác bất kì về việc tính giá trị lượng giác của góc α với .
Ví dụ:
a) Tính .
b) Rút gọn biểu thức: (giả sử tanα và cotα đều có nghĩa).
Hướng dẫn giải
a)
b) Ta có:
................................
................................
................................
Lưu trữ: Tóm tắt lý thuyết Toán 11 (sách cũ)
- Tổng hợp lý thuyết chương Hàm số lượng giác - phương trình lượng giác
- Tổng hợp lý thuyết chương Tổ hợp - Xác suất
- Tổng hợp lý thuyết chương Dãy số - Cấp số cộng và cấp số nhân
- Tổng hợp lý thuyết chương Giới hạn
- Tổng hợp lý thuyết chương Đạo hàm
- Tổng hợp lý thuyết chương Phép dời hình và phép đồng dạng trong mặt phẳng
- Tổng hợp lý thuyết chương Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
- Tổng hợp lý thuyết chương Vectơ trong không gian. Quan hệ vuông góc trong không gian
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều