Các dạng bài tập Đại số lớp 10 chọn lọc có lời giải

Các dạng bài tập Đại số lớp 10 chọn lọc có lời giải

Tài liệu tổng hợp trên 50 dạng bài tập Toán lớp 10 phần Đại số được các Giáo viên nhiều năm kinh nghiệm biên soạn với đầy đủ phương pháp giải, ví dụ minh họa và trên 1000 bài tập trắc nghiệm chọn lọc từ cơ bản đến nâng cao có lời giải sẽ giúp học sinh ôn luyện, biết cách làm các dạng toán lớp 10 Đại số từ đó đạt điểm cao trong các bài thi môn Toán lớp 10.

Chuyên đề: Mệnh đề - Tập hợp

Chuyên đề: Mệnh đề

Chuyên đề: Tập hợp và các phép toán trên tập hợp

Chuyên đề: Số gần đúng và sai số

Bài tập tổng hợp Chương Mệnh đề, Tập hợp (có đáp án)

Chuyên đề: Hàm số bậc nhất và bậc hai

Chủ đề: Đại cương về hàm số

Chủ đề: Hàm số bậc nhất

Chủ đề: Hàm số bậc hai

Bài tập tổng hợp chương

Chuyên đề: Phương trình. Hệ phương trình

Các dạng bài tập chương Phương trình, Hệ phương trình

Chuyên đề: Bất đẳng thức. Bất phương trình

Chuyên đề: Thống kê

Chuyên đề: Cung và góc lượng giác. Công thức lượng giác




Cách xác định tính đúng sai của mệnh đề

Phương pháp giải

+ Mệnh đề: xác định giá trị (Đ) hoặc (S) của mệnh đề đó.

+ Mệnh đề chứa biến p(x): Tìm tập hợp D của các biến x để p(x) (Đ) hoặc (S).

Ví dụ minh họa

Ví dụ 1: Trong các câu dưới đây, câu nào là mệnh đề, câu nào không phải là mệnh đề? Nếu là mệnh đề, hãy xác định tính đúng sai.

a) x2 + x + 3 > 0

b) x2 + 2 y > 0

c) xy và x + y

Hướng dẫn:

a) Đây là mệnh đề đúng.

b) Đây là câu khẳng định nhưng chưa phải là mệnh đề vì ta chưa xác định được tính đúng sai của nó (mệnh đề chứa biến).

c) Đây không là câu khẳng định nên nó không phải là mệnh đề.

Ví dụ 2: Xác định tính đúng sai của các mệnh đề sau:

1) 21 là số nguyên tố

2) Phương trình x2 + 1 = 0 có 2 nghiệm thực phân biệt

3) Mọi số nguyên lẻ đều không chia hết cho 2

4) Tứ giác có hai cạnh đối không song song và không bằng nhau thì nó không phải là hình bình hành.

Hướng dẫn:

1) Mệnh đề sai vì 21 là hợp số.

2) Phương trình x2 + 1 = 0 vô nghiệm nên mệnh đề trên sai

3) Mệnh đề đúng.

4) Tứ giác có hai cạnh đối không song song hoặc không bằng nhau thì nó không phải là hình bình hành nên mệnh đề sai.

Ví dụ 3: Trong các câu sau đây, câu nào là mệnh đề, câu nào không phải là mệnh đề. Nếu là mệnh đề thì nó thuộc loại mệnh đề gì và xác định tính đúng sai của nó:

a) Nếu a chia hết cho 6 thì a chia hết cho 2.

b) Nếu tam giác ABC đều thì tam giác ABC có AB = BC = CA.

c) 36 chia hết cho 24 nếu và chỉ nếu 36 chia hết cho 4 và 36 chia hết cho 6.

Hướng dẫn:

a) Là mệnh đề kéo theo (P ⇒ Q) và là mệnh đề đúng, trong đó:

P: "a chia hết cho 6" và Q: "a chia hết cho 2".

b) Là mệnh đề kéo theo (P ⇒ Q) và là mệnh đề đúng, trong đó:

P: "Tam giác ABC đều" và Q: "Tam giác ABC có AB = BC = CA"

c) Là mệnh đề tương đương (P⇔Q) và là mệnh đề sai, trong đó:

P: "36 chia hết cho 24" là mệnh đề sai

Q: "36 chia hết cho 4 và 36 chia hết cho 6" là mệnh đề đúng.

Ví dụ 4: Tìm x ∈ D để được mệnh đề đúng:

a) x2 - 3x + 2 = 0

b) 2x + 6 > 0

c) x2 + 4x + 5 = 0

Hướng dẫn:

a) x2 - 3x + 2 = 0 có 2 nghiệm x = 1 và x = 3.

⇒ D = {1; 3}

b) 2x + 6 > 0 ⇔ x > -3

⇒ D = {-3; +∞)┤

c) x2 + 4x + 5 = 0 ⇔ (x + 2)2 + 1 = 0 ⇒ phương trình vô nghiệm.

Vậy D= ∅

Cách giải bài tập các phép toán trên tập hợp

Phương pháp giải

Hợp của 2 tập hợp:

x ∈ A ∪ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Giao của 2 tập hợp

x ∈ A ∩ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hiệu của 2 tập hợp

x ∈ A \ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phần bù

Khi B ⊂ A thì A\B gọi là phần bù của B trong A, kí hiệu là CA B.

Ví dụ minh họa

Ví dụ 1: Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B;A ∩ B;A \ B;B \ A.

Hướng dẫn:

1. A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.

2. A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.

3. A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.

4. B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.

Ví dụ 2: Cho hai tập hợp:

A = { x ∈ R | x2 - 4x + 3 = 0};

B = { x ∈ R | x2 - 3x + 2 = 0}.

Tìm A ∪ B ; A ∩ B ; A \ B ; B \ A.

Hướng dẫn:

Ta có: A={1;3} và B={1;2}

A ∪ B={1;2;3}

A ∩ B={1}

A \ B={3}

B \ A={2}

Ví dụ 3: Cho đoạn A=[-5;1] và khoảng B =(-3; 2). Tìm A ∪ B; A ∩ B.

Hướng dẫn:

A ∪ B=[-5;2)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

A ∩ B=(-3;1]

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ví dụ 4: Cho A={1,2,3,4,5,6,9}; B={1,2,4,6,8,9} và C={3,4,5,6,7}

a) Tìm hai tập hợp (A \ B) ∪ (B \ A) và (A ∪ B) \\ (A ∩ B). Hai tập hợp nhận được có bằng nhau không?

b) Hãy tìm A ∩ (B \ C) và (A ∩ B) \ C. Hai tập hợp nhận được có bằng nhau không?

Hướng dẫn:

a) A \ B={3,5}; B \ A={8}

⇒ (A \ B) ∪ (B \ A)={3;5;8}

A ∪ B={1,2,3,4,5,6,8,9}

A ∩ B={1,2,4,6,9}

⇒ (A ∪ B) \\ (A ∩ B)= {3;5;8}

Do đó: (A \ B) ∪ (B \ A)=(A ∪ B) \\ (A ∩ B)

b) B \ C={1,2,8,9}

⇒ A ∩ (B \ C) ={1,2,9}.

A ∩ B={1,2,4,6,9}

⇒ (A ∩ B) \ C ={1,2,9}.

Do đó A ∩ (B \ C) =(A ∩ B) \ C

Ví dụ 5: Tìm tập hợp A, B biết:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

⇒ A = {1,5,7,8} ∪ {3,6,9} = {1,3,5,6,7,8,9}

B={2,10} ∪ {3,6,9} = {2,3,6,9,10}

Cách giải toán bằng biểu đồ Ven

Phương pháp giải

- Vẽ các vòng tròn đại diện các tập hợp (mỗi vòng tròn là một tập hợp) lưu ý 2 vòng tròn có phần chung nếu của 2 tập hợp khác rỗng.

- Dùng các biến để chỉ số phần tử của từng phần không giao nhau.

- Từ giả thiết bài toán, lập hệ phương trình và giải tìm các biến.

Ví dụ minh họa

Ví dụ 1:Trong kì thi học sinh giỏi cấp trường, lớp 10A có 17 bạn được công nhận học sinh giỏi văn, 25 bạn học sinh giỏi toán. Tìm số học sinh đạt cả 2 giải văn và toán, biết lớp 10A có 45 bạn và có 13 bạn không đạt học sinh giỏi.

Hướng dẫn:

Biểu diễn tập hợp các học sinh giỏi văn và các học sinh giỏi toán bằng 2 đường cong kín và tập hợp các học sinh lớp 10A bằng hình chữ nhật như hình bên dưới.

Gọi x là số học sinh giỏi văn không giỏi toán; y là số học sinh giỏi cả văn và toán; z là số học sinh chỉ giỏi toán mà không giỏi văn và t là số học sinh không đạt học sinh giỏi.

Theo biểu đồ giả thiết, ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cộng (1) với (2) rồi trừ cho (3) ta được: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

(x + y) + (y + z) – (x + y + z + t) = 17 + 25 - 45

⇒ y - t = - 3 ⇒ y = t – 3 = 10

Vậy lớp 10A có 10 học sinh giỏi cả 2 môn văn và toán.

....................................

....................................

....................................

Lời giải bài tập lớp 10 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên